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Birkhoff aud de Boor first posed the question of the existence of a convergent
bicubic spline interpolation scheme for non-rectangular domains. In this paper
that query is answered affirmatively for L-shaped domains. Specifically, it is
shown that II Sf -- fll ~= O(h') where Sf is the bieubie spline interpolant associated
with a smooth function f, h is the maximum mesh spacing, r 4 for uniform
partitions, and r = 3 for nonuniform partitions.

1. INTRODUCTION

The present paper deals with the problem of how to construct a convergent
bicubic spline interpolation scheme for L-shaped domains. This problem was
first posed by Birkhoff and de Boor [2, pp. 186-187]. One such method was
described in detail by the present authors in an early draft of [5], and referred
to by Professor Birkhoff in his survey article [1, Theorem 4]. The order of
convergence was later improved (for nonuniform partitions) and was reported
in [4, Theorem 9].

The purpose of this note it to indicate the proof of convergence for
this bicubic spline interpolation scheme. Specifically, it is shown that
II Sf - III = O(hr ) where Sf is the bicubic spline interpolant associated with
a smooth function f, h is the maximum mesh spacing, r == 4 for uniform
partitions and r = 3 for nonuniform partitions. In addition, results involving
perturbation of (univariate) cubic splines are presented which are used in
establishing this convergence and which are of interest in their own right.
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2. A CONVERGENT INTERPOLATION SCHEME

63

Let (L, 7T) denote the partitioned L-shaped domain in Fig. I. The smooth
Hermite space consisting of piecewise bicubic polynomials in Cl[L] is denoted
by H2(L,7T).
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FIGURE 1

The spline subspace S2(L, 7T) is defined by

(I)

It is well known [3] that given a function IE C4[L], the smooth Hermite
interpolant Uf' of I satisfies

o (2)

where h is the maximum mesh spacing. The main result of this paper
establishes that Uf in (2) essentially can be replaced by a bicubic spline of
interpolation. This result is contained in the following theorem.
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THEOREM J. Let ftc C>[L] where (L, 17) is gicen ill Fig. I. Then,

(i) Ihere exists a unique bicubic splinc interpolate 11'{ off satisfying

(a) trtlxi' yJ

(b) )ly.O)(Xi, y;)

f(xi ,Yj)

f(l·o)('(i ,JJ
at each mesh {loint (Xi, y;) E 17.

along AC, BE, FD and at the corners
A, B, C, D, F

(c) trjll.l) (Xi' yJ fO'I) (x, ,rJ akmg AB, CD and at Ihe comet's A, B,
C,D

(d) )I,;1.1)(Xi, )"j)' /1.1)(x" y;) along EF allli al Ihe comers A, B. C, D
and F

(ii) If the maximum mesh ratios fJ maxJx':l x,);min(x;~'1 .._. X,) and

fJ' == maxil,V'+1 -- yJ/min).J'; i 1'" yJ remain bounded as

h .~." max{x, ... Xi-I' rj )'j_ L: - > O.
l,j

then

i tr(k,1) .ru;:,1) O(hH -
1
), 0 k 1 3 til RI ," j

Gnd

IrY',1) /k,1) O(h3- k -- I). 0 k .1 in R2 ,

(3)

(4)

(iii) IffJ= fJ'ee ] then (3) holds throughout 1..

Proof We consider here only the salient features of the proof; the
interested reader is referred to [5] for the complete details.

It was shown in [4, Theorem 2] that any function s in 5 2(['77) CC'
H2(L, 77) n C2[L] is contained in C(2,21[L]. Thus, along each mesh line x == Xi
(y = yJ, the univariate functions S(k,f)l(Xi' Y), 0 k 2, (.1'10, i '(x. Y;),

0, I 2) are cubic splines. The data given in (i)(ad) uniquely define cubic
splines along each mesh line (c.f. [4, 5]). Hence, the complete set of Hermite
coordinates of a function Wf is determined. Since Wi Fe 02.21[LJ, Wf E5 2(L, 77)

and the proof of (i) is complete.
Using the constructive sequence described in [5. p. 15] and Theorems 2

and 3 in the Appendix. one can derive error bounds for the Hermite
coordinates of Wi , i.e. bounds for

WUe,il(X. ),.) _ jU"I)(x. y.)
f .l ~ .J"- l , • J

Specifically, one can derive

j v(k,il(v. )") __. I U,,f.)(y j') 0 <: k I
! '/\l':I If ·'\i , ."j" ~,' I.

o 1<.1 (5)
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where s = 4 for f3 = f3' = I and s = 3 otherwise. Thus, (wf - Uf) is a bicubic
Hermite polynomial whose Hermite coordinates are converging to zero. Since
the Hermite basis functions are sufficiently well-behaved as h -+ 0 [7, p. 213]
we have

o c( k, I ...•,; I. (6)

The main result follows from (2), (6), and the triangle inequality

ApPENDIX

The following theorems establish bounds for the propagation of errors
in the given data of two (univariate) cubic spline interpolation schemes.
These results are used in the proof of Theorem I and are also of interest in
the context of the stability of spline interpolation.

THEOREM 2. Let g E Ck[l] where I = [a, b] is partitioned by

7T : a = Xo < Xl < .,. < X n = b,

and let sex) be the cubic spline satisfying sex;) = g(Xi) + ~, , 0 :s; i nand
s'(X,) = g'(x;) + 1)j, j = 0, n. If ! ti ! :c:;; K 1 and !1)j! (; K2 , then, for
I :c:;; i :c:;; n - I,

,4/27 ;1 g(3) !!'" h2 + (6/h) K1 + K2 , k = 3
I s'(xi ) ~ !'(Xi)!:C:;; 1/24 II g(4) h3 + (6/h) K1 + K2 , k == 4 (8)

1/60 ;r gCi)i" h4
-:- (6/h) K1 1- K 2 , k = 5,

uniform partition

Proof For KI = K2 = 0 (i.e., S Cc Sg) and k = 3 or 4 it is shown in [7]
that for 1 :c:;; i :c:;; n - I

, , / \4/27 g(:l)

I Sg (x,) - g (X;) I ~•• 11/24!' (4)
, Ig

11 2 k = 3
h3 k = 4.

(9)

In a similar manner for k = 5 and a uniform partition it can be shown that

For K 1 and/or K 2 positive,

SeX) = Sg(x) + E(X)

1 :C:;;j:C:;;n-l. (10)

(11)
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where E(X) is a cubic spline satisfying

o n
( 12)

0, II

The Hermite coordinates of E(X), satisfy [2]

LlX;)' (.)
-~- EX-
LIx" 1 '

forI i n - 1 where Llxj = Xj ~ Xjl .

Solving (13) for the unknown Hermite coordinates

we obtain

Llx; ( )]
~- E Xi+l
.::.JX"l

( 13)

(14)

where i:P and ~ are composed of appropriate terms involving ti and 1Ij,
respectively, and M is a tridiagonal matrix. Premultiplying (14) by the
diagonal matrix D = diag{diiJ where dll 1/2(Llx;'- LlXi+l) and inverting
yields as in [7]

11 E '.1 ~1(DM)-III[11 D(]J +;1 Dt/J I). (15)

Since II(DM) I Ii <;; 2, 'I D1J ~ (31ft) KI and ,[ Dill Ii cS; l/2K2 , [7, p. 213] we have

The proof of Theorem 2 follows from (9), (10), (16) and

\ s'(x;) - g'(x,)i i so'(x,) - g'(x,)[ -+ i E'(x;)l.

(16)

(17)

Q.E.D.

By considering s as an element of the smooth Hermite space one has the
following.

COROLLARY 1. If the mesh ratio j3 is bounded and K I = O(h) and
K2 = 0(1), then s converges uniformly over I to g as h ---+ O.

Next, we have the following theorem.

THEOREM 3. Let g E Co[I] and let rex) be the unique cubic spline satisfying
r(xi) = g(Xi) + Ei, i = 0, I and r'(x;) = g'(Xj) + 1Ij, 0 ~.i ~ n, relative
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to the partition 17: a = Xo < Xl < ... < X n = b. If I gi I < KI and
I YJj i K 2 , then for 2 < i < n

(18)

where

K = (f3(b - a)/48)[11 gl4J \1 -+ (f3(b - a)/3) Ii g(5) II]

K3 = [h(I -+ 2f32) -+ f3(f32 - l)(b - a)]

and K4 = [f3(b - a) h -+ (1/2)[(b - a)2 -+ 2h(b - a)](f32 - 1)].

Further, if YJi = 0 for i ~ 2, then

K4 = [(b - a)(f32 - 1) -+ 2f3h] h.

If17 is uniform then

K = [(b - a)/180]11 g(5) II h.

Proof Consider first the case K1 = K2 = 0 (r(x) = rix)). For ~T uniform
this result is essentially that of Loscalzo and Talbot [8, Theorem 5]2. The
analog for 17 nonuniform is established by considering the wf~ll-known

relationship between the Hermite coordinates of rex), i.e. (13) with ,~ replaced
by r.

From these equations we obtain the matrix equation

where A is lower triangular,

Al =0 (19)

and lJ involves higher order terms in gW(Xj) and g(5J(XJ. If (19) is premultiplied
by a diagonal matrix D = diag{diiJ where dii = l/Llxi LlXi+l then (DA)-l
is lower triangular and [(DA)-IL+k.i"" LlX~tl - LlX~+2 -+ ... -+ (-l)k LlX~+k+l

for 0 < k :C (m - I - i) and 1 ,:;. i < 11I - 1. After some manipulation
one can then establish [5, p. 8] that

For K I and/or K 2 positive r = rg -+ E and (19) becomes

Al = lJ iJi -+ fJi

2 Their result requires one more continuous derivative than stated in [8].

(20)

(21)
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where ifi and lJl involve gi and YJ; respectively. Then

I €(x,J (22)

The main result then follows from (18), (22), and

€(x;)' . Q.E.D.

By considering r as an element of the smooth Hermite space one has the
following.

COROLLARY 2. lithe mesh ratio (3 is bounded and K1 0(h2), K2 = 0(h2)

then the cubic spline r converges uniformly orer I to g. If 7T is uniform then
K 1 and K2 need only be O(h).
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